MATH 245 S19, Exam 2 Solutions

1. Carefully define the following terms: Nonconstructive Existence theorem, Proof by Shifted Induction, Proof by Strong Induction.
The Nonconstructive Existence Theorem states that if $\forall x \in D, \neg P(x)$ is a contradiction, then $\exists x \in D, P(x)$ is true. Let $s \in \mathbb{Z}$. To prove the proposition $\forall x \in \mathbb{Z}$ with $x \geq s$, $P(x)$ by shifted induction, we must (a) Prove that $P(s)$ is true; and (b) Prove that $\forall x \in \mathbb{Z}$ with $x \geq s, P(x) \rightarrow P(x+1)$. To prove the proposition $\forall x \in \mathbb{N}, P(x)$ by strong induction, we must (a) Prove that $P(1)$ is true; and (b) Prove that $\forall x \in \mathbb{N}$, $P(1) \wedge P(2) \wedge \cdots \wedge P(x) \rightarrow P(x+1)$.
2. Carefully define the following terms: recurrence, big Omega, big Theta.

A recurrence is a sequence with the property that all but finitely many of its terms are defined in terms of its previous terms. Let a_{n}, b_{n} be sequences. We say that a_{n} is big Omega of b_{n} if $\exists n_{0} \in \mathbb{N}, \exists M \in \mathbb{R}, \forall n \geq n_{0}, M\left|a_{n}\right| \geq\left|b_{n}\right|$ holds. Let a_{n}, b_{n} be sequences. We say that a_{n} is big Theta of b_{n} if a_{n} is big O of b_{n} and also a_{n} is big Omega of b_{n}.
3. Let $a, b \in \mathbb{Z}$ with $b \geq 1$. Use minimum element induction to prove $\exists q, r \in \mathbb{Z}$ with $a=b q+r$ and $0<r \leq b$.
Let $S=\left\{m \in \mathbb{Z}: m \geq \frac{a}{b}-1\right\}$, which is a nonempty set of integers. It has lower bound $\frac{a}{b}-1$, so by minimum element induction it must have a minimum element, which we call q. Since $q \in S$, we have $q \in \mathbb{Z}$ and $q \geq \frac{a}{b}-1$. Hence $b q \geq a-b$, which rearranges to $b \geq a-b q$. Set $r=a-b q$; by the above calculation $b \geq r$. Since q was minimal in S, $q-1 \notin S$. Since $q \in \mathbb{Z}$ we must have $q-1<\frac{a}{b}-1$, or $q<\frac{a}{b}$. We have $q b<a$, which rearranges to $0<a-b q=r$. Combining, we have $0<r \leq b$.
4. Let $x \in \mathbb{R}$. Prove that $\lceil x\rceil$ is unique; i.e., prove there is at most one $n \in \mathbb{Z}$ with $n-1<$ $x \leq n$.
Suppose there were two integers n, n^{\prime}, satisfying $n-1<x \leq n$ and also $n^{\prime}-1<x \leq n^{\prime}$. Combining $n-1<x$ with $x \leq n^{\prime}$, we get $n-1<n^{\prime}$. Combining $n^{\prime}<x+1$ with $x+1 \leq n+1$, we get $n^{\prime}<n+1$. Hence, we have $n-1<n^{\prime}<n+1$. By a theorem from the book (1.12d), we must have $n=n^{\prime}$.
5. Let F_{n} denote the Fibonacci numbers. Prove that for all $n \in \mathbb{N}$, we have $F_{2 n}=\sum_{i=0}^{n-1} F_{2 i+1}$. We prove by (ordinary) induction. The base case is $n=1$: we have $F_{2 \cdot 1}=F_{2}=$ 1 , while the sum has just one term, namely $F_{2 \cdot 0+1}=F_{1}=1$. Now, let $n \in \mathbb{N}$ be arbitrary, and assume that $F_{2 n}=\sum_{i=0}^{n-1} F_{2 i+1}$. We add $F_{2 n+1}$ to both sides, getting $F_{2 n+1}+F_{2 n}=F_{2 n+1}+\sum_{i=0}^{n-1} F_{2 i+1}$. Now, $F_{2 n+1}+F_{2 n}=F_{2 n+2}=F_{2(n+1)}$ by the Fibonacci recurrence (since $2 n+2 \geq 2$). Also, $F_{2 n+1}+\sum_{i=0}^{n-1} F_{2 i+1}=\sum_{i=0}^{n} F_{2 i+1}$. Combining, we get $F_{2(n+1)}=\sum_{i=0}^{n} F_{2 i+1}$.
6. Prove that for all $n \in \mathbb{N}$ with $n \geq 4$, we have $n!>2^{n}$.

We prove by (shifted) induction. The base case is $n=4$: we have $4!=24>16=2^{4}$. Now, let $n \in \mathbb{N}$ with $n \geq 4$, and assume that $n!>2^{n}$. We multiply both sides by $n+1$, getting $(n+1) n!>2^{n}(n+1)$. Now, $(n+1) n!=(n+1)$! by the factorial definition, since $n+1 \geq 1$. Also, $n+1>2$ (since $n \geq 4$), so $2^{n}(n+1)>2^{n} \cdot 2=2^{n+1}$. Combining, we get $(n+1)!>2^{n+1}$.
7. Let $a_{n}=n^{1.9}+n^{2}$. Prove that $a_{n}=O\left(n^{2}\right)$.

Set $n_{0}=1$ and $M=2$. Let $n \geq n_{0}=1$ be arbitrary. We have $n^{0.1} \geq 1=n^{0}$; multiplying both sides by the positive $n^{1.9}$ we get $n^{2} \geq n^{1.9}$. Hence $\left|a_{n}\right|=a_{n}=n^{1.9}+n^{2} \leq n^{2}+n^{2}=$ $2 n^{2}=2\left|n^{2}\right|=M\left|n^{2}\right|$.
8. Solve the recurrence given by $a_{0}=2, a_{1}=6, a_{n}=5 a_{n-1}-6 a_{n-2}(n \geq 2)$.

Our characteristic polynomial is $r^{2}-5 r+6=(r-2)(r-3)$. It has two distinct roots, 2,3 . Hence, the general solution to the recurrence is $a_{n}=A 2^{n}+B 3^{n}$. We now apply the initial conditions. $2=a_{0}=A 2^{0}+B 3^{0}=A+B .6=a_{1}=A 2^{1}+B 3^{1}=2 A+3 B$. We solve the system $\{A+B=2,2 A+3 B=6\}$ to find $B=2, A=0$. Hence, the specific solution to the recurrence is $a_{n}=2 \cdot 3^{n}$.
9. Prove that for all $x \in \mathbb{R}$, we have $|x-1|+|x+2| \geq 3$.

Let $x \in \mathbb{R}$ be arbitrary. We have three cases, depending on $x:(-\infty,-2),[-2,1),[1,+\infty)$: Case $x<-2$: We have $|x-1|+|x+2|=-(x-1)-(x+2)=-2 x-1$. Since $x<-2$, we multiply by -2 to get $-2 x>(-2)(-2)=4$, so $-2 x-1>4-1=3$.
Case $-2 \leq x<1$: We have $|x-1|+|x+2|=-(x-1)+(x+2)=3$. This is certainly ≥ 3.
Case $1 \leq x$: We have $|x-1|+|x+2|=(x-1)+(x+2)=2 x+1$. Since $x \geq 1$, we multiply by 2 to get $2 x \geq 2$ and hence $2 x+1 \geq 2+1=3$.
10. Let $x \in \mathbb{R}$. Prove that $\left\lfloor x+\frac{1}{2}\right\rfloor=\lfloor x\rfloor$ if and only if $x-\lfloor x\rfloor<\frac{1}{2}$.

Note: "If and only if" means there are two things to prove.
SOLUTION 1: Suppose first that $x-\lfloor x\rfloor<\frac{1}{2}$. We add $\frac{1}{2}$ to both sides and re arrange to get $x+\frac{1}{2}<\lfloor x\rfloor+1$. But also $x+\frac{1}{2}>x \geq\lfloor x\rfloor$. Hence $\lfloor x\rfloor \leq x+\frac{1}{2}<\lfloor x\rfloor+1$. Hence $\lfloor x\rfloor$ and $\left\lfloor x+\frac{1}{2}\right\rfloor$ are both integers that satisfy the same two inequalities; by the uniqueness of $\left\lfloor x+\frac{1}{2}\right\rfloor$, they must be equal.
Suppose now that $x-\lfloor x\rfloor \geq \frac{1}{2}$. We add $\frac{1}{2}$ to both sides and rearrange to get $x+\frac{1}{2} \geq\lfloor x\rfloor+1$. By a theorem from the book (5.16a), we have $\left\lfloor x+\frac{1}{2}\right\rfloor \geq\lfloor\lfloor x\rfloor+1\rfloor$. By another theorem from the book (5.17a), we have $\lfloor\lfloor x\rfloor+1\rfloor=\lfloor x\rfloor+\lfloor 1\rfloor=\lfloor x\rfloor+1$. Combining, $\left\lfloor x+\frac{1}{2}\right\rfloor \geq\lfloor x\rfloor+1$; in particular, $\left\lfloor x+\frac{1}{2}\right\rfloor \neq\lfloor x\rfloor$.

SOLUTION 2: Note that since $\lfloor x\rfloor$ is an integer, by a theorem from the book (5.17a), $\left\lfloor x+\frac{1}{2}\right\rfloor-\lfloor x\rfloor=\left\lfloor(x-\lfloor x\rfloor)+\frac{1}{2}\right\rfloor=\lfloor A\rfloor$. Now, if $x-\lfloor x\rfloor<\frac{1}{2}$, then $A<1$, so $\lfloor A\rfloor \leq 0$ and hence $\left\lfloor x+\frac{1}{2}\right\rfloor \leq\lfloor x\rfloor$. But also $\left\lfloor x+\frac{1}{2}\right\rfloor \geq\lfloor x\rfloor$ (by a theorem from the book, 5.16a, since $x+\frac{1}{2} \geq x$), so $\left\lfloor x+\frac{1}{2}\right\rfloor=\lfloor x\rfloor$. If instead $x-\lfloor x\rfloor \geq \frac{1}{2}$, then $1 \leq A$, so $\lfloor A\rfloor \geq 1$ and hence $\left\lfloor x+\frac{1}{2}\right\rfloor \neq\lfloor x\rfloor$.

