
MATH 245 S19, Exam 2 Solutions

1. Carefully define the following terms: Nonconstructive Existence theorem, Proof by Shifted
Induction, Proof by Strong Induction.

The Nonconstructive Existence Theorem states that if ∀x ∈ D,¬P (x) is a contradiction,
then ∃x ∈ D,P (x) is true. Let s ∈ Z. To prove the proposition ∀x ∈ Z with x ≥ s,
P (x) by shifted induction, we must (a) Prove that P (s) is true; and (b) Prove that
∀x ∈ Z with x ≥ s, P (x) → P (x + 1). To prove the proposition ∀x ∈ N, P (x) by
strong induction, we must (a) Prove that P (1) is true; and (b) Prove that ∀x ∈ N,
P (1) ∧ P (2) ∧ · · · ∧ P (x)→ P (x + 1).

2. Carefully define the following terms: recurrence, big Omega, big Theta.

A recurrence is a sequence with the property that all but finitely many of its terms are
defined in terms of its previous terms. Let an, bn be sequences. We say that an is big
Omega of bn if ∃n0 ∈ N, ∃M ∈ R, ∀n ≥ n0, M |an| ≥ |bn| holds. Let an, bn be sequences.
We say that an is big Theta of bn if an is big O of bn and also an is big Omega of bn.

3. Let a, b ∈ Z with b ≥ 1. Use minimum element induction to prove ∃q, r ∈ Z with a = bq+ r
and 0 < r ≤ b.

Let S = {m ∈ Z : m ≥ a
b
− 1}, which is a nonempty set of integers. It has lower bound

a
b
− 1, so by minimum element induction it must have a minimum element, which we call

q. Since q ∈ S, we have q ∈ Z and q ≥ a
b
− 1. Hence bq ≥ a − b, which rearranges to

b ≥ a − bq. Set r = a − bq; by the above calculation b ≥ r. Since q was minimal in S,
q − 1 /∈ S. Since q ∈ Z we must have q − 1 < a

b
− 1, or q < a

b
. We have qb < a, which

rearranges to 0 < a− bq = r. Combining, we have 0 < r ≤ b.

4. Let x ∈ R. Prove that dxe is unique; i.e., prove there is at most one n ∈ Z with n − 1 <
x ≤ n.

Suppose there were two integers n, n′, satisfying n− 1 < x ≤ n and also n′ − 1 < x ≤ n′.
Combining n − 1 < x with x ≤ n′, we get n − 1 < n′. Combining n′ < x + 1 with
x+ 1 ≤ n+ 1, we get n′ < n+ 1. Hence, we have n− 1 < n′ < n+ 1. By a theorem from
the book (1.12d), we must have n = n′.

5. Let Fn denote the Fibonacci numbers. Prove that for all n ∈ N, we have F2n =
n−1∑
i=0

F2i+1.

We prove by (ordinary) induction. The base case is n = 1: we have F2·1 = F2 =
1, while the sum has just one term, namely F2·0+1 = F1 = 1. Now, let n ∈ N be
arbitrary, and assume that F2n =

∑n−1
i=0 F2i+1. We add F2n+1 to both sides, getting

F2n+1 +F2n = F2n+1 +
∑n−1

i=0 F2i+1. Now, F2n+1 +F2n = F2n+2 = F2(n+1) by the Fibonacci

recurrence (since 2n + 2 ≥ 2). Also, F2n+1 +
∑n−1

i=0 F2i+1 =
∑n

i=0 F2i+1. Combining, we
get F2(n+1) =

∑n
i=0 F2i+1.



6. Prove that for all n ∈ N with n ≥ 4, we have n! > 2n.

We prove by (shifted) induction. The base case is n = 4: we have 4! = 24 > 16 = 24.
Now, let n ∈ N with n ≥ 4, and assume that n! > 2n. We multiply both sides by n + 1,
getting (n + 1)n! > 2n(n + 1). Now, (n + 1)n! = (n + 1)! by the factorial definition, since
n+ 1 ≥ 1. Also, n+ 1 > 2 (since n ≥ 4), so 2n(n+ 1) > 2n · 2 = 2n+1. Combining, we get
(n + 1)! > 2n+1.

7. Let an = n1.9 + n2. Prove that an = O(n2).

Set n0 = 1 and M = 2. Let n ≥ n0 = 1 be arbitrary. We have n0.1 ≥ 1 = n0; multiplying
both sides by the positive n1.9 we get n2 ≥ n1.9. Hence |an| = an = n1.9 + n2 ≤ n2 + n2 =
2n2 = 2|n2| = M |n2|.

8. Solve the recurrence given by a0 = 2, a1 = 6, an = 5an−1 − 6an−2 (n ≥ 2).

Our characteristic polynomial is r2 − 5r + 6 = (r − 2)(r − 3). It has two distinct roots,
2, 3. Hence, the general solution to the recurrence is an = A2n + B3n. We now apply the
initial conditions. 2 = a0 = A20 + B30 = A + B. 6 = a1 = A21 + B31 = 2A + 3B. We
solve the system {A + B = 2, 2A + 3B = 6} to find B = 2, A = 0. Hence, the specific
solution to the recurrence is an = 2 · 3n.

9. Prove that for all x ∈ R, we have |x− 1|+ |x + 2| ≥ 3.

Let x ∈ R be arbitrary. We have three cases, depending on x: (−∞,−2), [−2, 1), [1,+∞):
Case x < −2: We have |x− 1|+ |x + 2| = −(x− 1)− (x + 2) = −2x− 1. Since x < −2,
we multiply by −2 to get −2x > (−2)(−2) = 4, so −2x− 1 > 4− 1 = 3.
Case −2 ≤ x < 1: We have |x− 1| + |x + 2| = −(x− 1) + (x + 2) = 3. This is certainly
≥ 3.
Case 1 ≤ x: We have |x − 1| + |x + 2| = (x − 1) + (x + 2) = 2x + 1. Since x ≥ 1, we
multiply by 2 to get 2x ≥ 2 and hence 2x + 1 ≥ 2 + 1 = 3.

10. Let x ∈ R. Prove that bx + 1
2
c = bxc if and only if x− bxc < 1

2
.

Note: “If and only if” means there are two things to prove.

SOLUTION 1: Suppose first that x−bxc < 1
2
. We add 1

2
to both sides and re arrange to

get x + 1
2
< bxc+ 1. But also x + 1

2
> x ≥ bxc. Hence bxc ≤ x + 1

2
< bxc+ 1. Hence bxc

and bx+ 1
2
c are both integers that satisfy the same two inequalities; by the uniqueness of

bx + 1
2
c, they must be equal.

Suppose now that x−bxc ≥ 1
2
. We add 1

2
to both sides and rearrange to get x+ 1

2
≥ bxc+1.

By a theorem from the book (5.16a), we have bx + 1
2
c ≥ bbxc + 1c. By another theo-

rem from the book (5.17a), we have bbxc + 1c = bxc + b1c = bxc + 1. Combining,
bx + 1

2
c ≥ bxc+ 1; in particular, bx + 1

2
c 6= bxc.

SOLUTION 2: Note that since bxc is an integer, by a theorem from the book (5.17a),
bx+ 1

2
c− bxc = b(x−bxc) + 1

2
c = bAc. Now, if x−bxc < 1

2
, then A < 1, so bAc ≤ 0 and

hence bx + 1
2
c ≤ bxc. But also bx + 1

2
c ≥ bxc (by a theorem from the book, 5.16a, since

x + 1
2
≥ x), so bx + 1

2
c = bxc. If instead x− bxc ≥ 1

2
, then 1 ≤ A, so bAc ≥ 1 and hence

bx + 1
2
c 6= bxc.


